Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
2
1
2
1
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..((||
L1
||+||
L2
||) - 1)
}
7.
x
= (
L1
@
L2
)[
i
]
8.
y
= (
L1
@
L2
)[(
i
+1)]
9.
(
i
< ||
L1
||)
y
=
L2
[((
i
- ||
L1
||)+1)]
latex
by ((RWO "select_append_back" (-2))
CollapseTHEN (((Auto')
CollapseTHEN (((NthHypSq (-2))
Co
CollapseTHEN ((if (((first_nat 2:n)) = 0) then (Repeat (((EqCD)
CollapseTHEN ((Try (Trivial))
C
))
)) else (RepeatFor (first_nat 2:n) (((EqCD)
CollapseTHEN ((Try (Trivial))
))
)))
))
))
))
Co
latex
C
1
:
C1:
8.
y
=
L2
[((
i
+1) - ||
L1
||)]
C1:
9.
(
i
< ||
L1
||)
C1:
((
i
- ||
L1
||)+1) ~ ((
i
+1) - ||
L1
||)
C
.
Definitions
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
P
Q
,
n
+
m
,
n
-
m
,
#$n
,
l
[
i
]
,
as
@
bs
,
{
x
:
A
|
B
(
x
)}
,
,
||
as
||
,
i
j
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
A
,
s
=
t
,
{
i
..
j
}
,
type
List
,
s
~
t
,
Type
Lemmas
iff
wf
,
rev
implies
wf
,
select
append
back
origin